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Summary. A non-local representation of the effective potential due to a molecular 
fragment is proposed here. Using this technique one can reproduce both Coulomb 
and exchange operators with kernels made up by molecular orbitals localized 
on a given molecular fragment. Such an approach seems particularly effective for 
large molecules with well-defined chemical fragments since in this case the kernel 
orbitals can be prepared through separate calculations on each fragment. The 
performance of the method is illustrated through calculations on specific molecular 
examples. 
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1 Introduction 

The ability to predict the electronic structure of an extended chemical system in 
a quantitative way, as a function of its geometrical parameters, represents an 
ultimate goal in quantum chemistry. A way to approach this goal - without 
introducing empirical parameters, but still reducing drastically the dimension of 
the computational effort - is based on the observation that many of the chemical 
properties of a molecule depend on a few "valence" electrons moving in the effective 
field of the nuclei and of the other "core" electrons. Furthermore, a typical large 
system can be described as an aggregate of molecular fragments or functional 
groups such that the effective field, which governs the motion of the few "valence" 
electrons, consists of the sum of the fields due to the various fragments. 

These ideas are interesting from a computational point of view only if two main 
conditions can be satisfied. The first is the ability to obtain transferable quantities 
and, in particular, transferable potentials for each of the fragments that can be 
consistently defined inside the extended system. The second is the ability to 
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represent these effective potentials in a simple, economical, but sufficiently accu- 
rate way. 

In regard to the first point, there are many studies ranging from small molecules 
to large systems [1-2] on the transferability of localized molecular orbitals and 
Fock matrix elements. The main requirements of this process that can be con- 
sidered the natural extension of the "frozen core" approximation are 1) a consistent 
definition of the fragments inside the large system - a definition that must reflect 
the nature and the structure of bonds and lone pairs - and 2) an efficient method of 
localizing the orbitals obtained from calculations on the separate fragments. This 
last problem can be easily solved by using one of the various methods [3-7] 
proposed for localizing the canonical orbitals through unitary transformations. 
Note that the resulting orbitals can also be used as an efficient tool for performing 
large CI calculations since they allow one to reduce the steep dependence of the 
computational effort on the molecular size [-8-10]. 

As for the problem of reproducing the effective potential which governs the 
behaviour of the valence electrons, we observe that there is a large quantity of 
literature - quoted under the names of "Pseudopotentials" [11-16] or "effec- 
tive/pseudo/model Hamiltonians" [17-29], see Refs. [30, 31] for a general over- 
view - which is based on the assumption that the valence electrons move inside the 
effective field produced by non-overlapping, spherically symmetric charge distribu- 
tions centred around the atomic nuclei. The resulting effective potential is the sum 
of atomic contributions: Vess = Ea fa, each one representing, at a level of complex- 
ity that depends on the chosen functional form, an atomic core potential with its 
various components (Coulomb, exchange . . .  ). 

Different representations have been proposed for these effective potentials. The 
simplest is a local form of the type f'a = VA(r), where VA(r) is usually a linear 
combination of gaussian or error functions modulated by powers of the radial 
coordinate. This form, which represents a crude approximation if applied to the 
entire potential [13], is widely used for the Coulomb part of the potential [20-25]. 
More sophisticated representations are based on semi-local forms [11-16], of 
the type Va=Xlmllm;A)va(r)( Im;A[,  or non-local forms [17-19] such as 

A = XpqlgpA)Cpq(gqA 1, where {[ Ira; A)}  and { [gpa)} are respectively harmonic and 
gaussians functions centred on the atom A. 

Finally, in the most complex model Hamiltonians [20-24] different representa- 
tions are used for the different parts of the atomic core potential, more specifically, 
a local representation is used for the Coulomb part and a non-local one for the 
exchange part as well as for the pseudopotential owing to the orthogonality 
constraints between core and valence oribitals. Note that, although characterized 
by different functional forms, these pseudopotentials are in general parametrized 
from ab initio calculations. This means that the exponents and the expansion 
coefficients, which characterize the chosen functional form, are determined through 
a least-square fitting to ab initio atomic core potentials. 

Although the results obtained using these model Hamiltonians are very often 
quite significant even in medium size molecules, the fact that the proposed effective 
potentials are sums of atomic core contributions represents a severe limitation 
since it does not allow one to take advantage of clear chemical information. Thus, 
for example, in a conjugated organic polymer one knows that the nature and the 
structure of the sigma skeleton is practically the same along the chain and, 
furthermore, very similar to that in the monomeric unit. Therefore, if one is 
interested in properties which depend on the n-electrons only, the most natural 
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choice is to derive the corresponding orbitals as eigenfunctions of a Fock operator 
in which the effective potential is that produced by the whole sigma skeleton given 
as the sum of identical monomeric contributions. An accurate and simple repre- 
sentation of such a potential cannot be obtained through a superposition of atomic 
core potentials, but it requires a different and strictly molecular type of approach. 
The ability to obtain an accurate and simple representation of the effective 
potential due to each monomeric unit (i.e. to a well-defined molecular fragment) 
would therefore represent a relevant improvement in the definition and the useful- 
ness of model Hamiltonians since it would allow one to construct efficiently the 
whole effective potential of any large chemical system. 

The idea of introducing "group potentials" in molecular calculations is strictly 
related to that of partitioning the electrons into groups, an idea which was formally 
developed by McWeeny [32, 33] in the so-called "Generalized Product Function" 
approach. This idea is also present in a paper of Morokuma et al. [34] where the 
two lone pair electrons of the NH3 molecule are treated in the effective potential of 
the Nls core and of the three N-H bonds. This effective potential, however, is 
represented in its Coulomb part as a sum of atomic contributions. 

More recently - see Ref. [35] - the authors have proposed a simple method for 
representing an exchange operator whose kernel consists of a set of molecular 
orbitals localized on a well-defined chemical fragment. This kernel is represented as 
a non-local form consisting of a weighted sum of projection operators constructed 
from a set of orthonormal orbitals, each of which is centred on the fragment itself 
and weighted by the mean value of the exchange operator on that orbital. The 
quality of this representation depends on the number and type of functions used 
in the expansion and can be improved, should the problem require it, simply by 
extending the basis set. 

The central observation on which this method is based is the following: 
quantum mechanical calculations, based on the LCAO method, require only the 
knowledge of the representation of the total Hamiltonian inside the space of the 
Slater determinants that can be built up using the chosen set of basis functions. 
This means that one needs to know the spectral resolution of a few important 
operators (such as the Coulomb or the exchange operator) only inside the space 
defined by these functions. 

In molecular calculations the basis sets are in general polycentric which thereby 
implies that the matrix elements representing the operators are defined also 
between functions centred on different fragments. However, if the operator is "short 
range" i.e. different from zero only inside a finite volume, such as the exchange 
operator - the absolute value of its matrix elements decreases rapidly as the 
distance between the functions that are implied in the matrix elements increases. It 
follows that one can reasonably represent the kernel of each operator using only 
a reduced number of functions centred on the fragment where the kernel orbitals 
are localized. 

The aim of this paper is to show that a representation, similar to that proposed 
by us in Ref. [35] for the exchange operator, can be used also for the "short-range" 
part of a Coulomb operator the kernel of which consists of molecular orbitals 
localized on a well defined chemical fragment. This "short-range" part can be 
obtained by subtracting from the Coulomb operator the potential due to the first 
few multipole moments of the charge distribution which defines the kernel of the 
operator. 

In this paper we also propose a procedure to obtain the optimal basis functions 
necessary for representing this part of the Coulomb operator. Our procedure is 
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based on the minimization of the "distance" between the exact and the approxim- 
ate operator in a reduced space defined by functions centred both on the fragment 
itself and on adjacent fragments. This minimization is achieved by increasing the 
number of functions used for the representation of the operator and by looking 
simultaneously for the orbital exponents that minimize this distance. Note that 
we refer to the definition of distance between two operators that is given in Ref. 
[30] and according to which our approximate operator can be named a "pseudo"- 
Coulomb operator. 

We will show that, through a judicious choice of the type and number of basis 
functions centred on the fragment itself, it is possible to obtain an accurate and 
economical representation of the "short-range" part of the Coulomb operator the 
kernel of which consists of orbitals localized on the fragment. This fact, together 
with the results obtained in Ref. [35] for the exchange, allows one to reproduce 
easily the whole effective potential due to the electronic charge distribution local- 
ized on a molecular fragment. In this respect our approach gives a way to construct 
a pseudo Hamiltonian that neither introduces empirical parameters nor imposes 
any given functional form upon the pseudo operators, but simply takes advantage 
of the available accurate calculations on separate molecular fragments. 

Furthermore, we observe that this technique, proposed for representing a frag- 
ment potential, is strictly related to the type and the dimension of the basis set 
chosen for spanning the valence space. This approach, in fact, does not introduce 
any specific or definite form of effective potential for any given fragment, but it 
suggests a way of representing the fragment potential in the specific space chosen 
for the "valence only" calculations. It follows that the quality of the representation 
can be properly calibrated on the characteristics and the type of the used valence 
basis set and, therefore, problems related to the change or the increase of the 
valence basis set - problems frequently encountered when using standard 
pseudopotential approaches and leading to various types of artefacts in the calcu- 
lations - are avoided. 

Finally, we want to remark that our method is qualitatively different from the 
approach known as "Model Potential" [20-24] for the following two main reasons: 

i) we propose an approximate representation of "short-range" operators the ker- 
nels of which consist of molecular orbitals localized on a given chemical fragment 
and not simply of operators with kernels made up by atomic core orbitals. 

ii) The representation of the "short-range" part of the Coulomb operator does not 
depend on the choice of a particular functional form but, having a generalized 
non-local form analogous to that proposed in Ref. [35] for the exchange, allows 
one to treat on an equal footing the exchange and the Coulomb operator of each 
molecular fragment and to take into account the characteristics of the valence basis 
set. For these reasons our approach is also qualitatively different from the "Effec- 
tive Fragment Potential Method" proposed by Morokuma et al. [34]. 

In Sect. 2, along the line of Ref. [35], we describe the method proposed for 
representing the "short-range" part of a Coulomb operator. In Sect. 3 we describe 
the procedure to obtain the optimal basis functions necessary for this type of 
representation and, in general, for representing efficiently any "short range" oper- 
ator. Finally, we present the results of test calculations on diatomic and polyatomic 
molecules considering also the case in which the fragment potential consists of 
a Coulomb plus an exchange part and analyzing also the degree of accuracy that 
can be reached through our approach. 
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2 M e t h o d  

Let us consider first a large system having a group of delocalized (valence) electrons 
and a set of d/{ distinct chemical fragments such that each one has a definite 
number of electrons localized on it. If the total wave function is an antisymmetrized 
product of group functions [32, 33] that are mutually related by the strong 
orthogonality condition, one can write the valence energy Ev (i.e. the energy of the 
valence electrons in the effective field of the nuclei and of the other localized 
electrons) in the following way: 

= + ½ p2v( l, 52 (1) 

where pt= and P2, are the first- and second-order density matrices obtained from 
the valence orbitals 2~ = f~s~ and: 

h ' =  T + ~,,, + Ver.r (2) 

with 

J.{ J/ 
Veff : 2 { [ I ( p 1 # )  - Vg] - ~ ( P l # ) }  : 2 [ Y ( P l # ) -  ~ ( P t # ) ]  (3) 

# # 

~., = ~.  + 2 ¢" (4) 
,u 

In Eqs. (3-4) l~ u represents the "long-range" components of the potential 
produced by the charge distribution Pt ,  on the fragment /~. It is precisely this 
'~ong-range" component which must be subtracted from the Coulomb operator 
I(plu) to obtain its "short-range" part ~(Plu). The kernel of these two operators, 
like that of the exchange operator ~(p~,) ,  depends on the density matrix 
Ptu relative to the fragment k+, while V~, is the standard electron-nuclei attraction 
potential. 

If one expands Ply in terms o f  a finite set of valence functions {v,} - as done 
routinely in standard molecular calculations - one needs to represent the operators 
defined in Eqs. (2-4) only inside the space {v,}. In Ref. [35] we have shown that the 
kernel of an exchange operator o~(pl,), consisting of molecular orbitals localized 
on the fragment #, can be represented as follows: 

x, 
.-Y.(~(2, -~') = ~ l.!u)(f)rli(s)k!~)rl*(s')z~e)*(f ') (5) 

ij 

with 

k ( • ) = . ] , •  , , , t i , ,  ~ ; [  tl;(s')z~)(~')dYcd:V u I~.!.>.~..~s~Pl.(2, 23 
(6) 

and {Z!u)t/i} a set of X u orthonormal spin-orbitals centred on #. Expansion (5) 
is exact in the limit of a complete set of orthonormal orbitals, however, because of 
the localized character of Plu and of the "short-range" nature of the operator 
J~(Pl,), one can obtain a representation suitable for molecular calculations even 
using a finite and relatively small number of orbitals, as long as they are properly 
chosen. 
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Exactly the same considerations can be applied to the representation of the 
"short-range" component ~?(p~u) of the Coulomb operator whose kernel with- 
out spin: 

*,,,V [ 'Pl . ()~I ,  X1) 7 
- r Lj - (7) 

can be represented as follows: 
y. 

(L ~') = ~,~,V ,,!,> ,(f~, ~!".),j ,~j~,(~')* ,~f'~, (8) 
ij 

,~ = , /d  t ) 1  I 7 :~- -~- - ,  a x l  --  g . ( r )  Z~")(f)d~. 
J LJ Ir--rxl  

with 

(9) 

Obviously, Eq. (8) as well as Eq. (5) for the exchange operator has to be 
modified when non-orthogonal orbitals {¢p!u)} are used. In this case, by taking into 
account the overlap matrix elements S~p = (q)~)lq)~)), one gets: 

Jr'. y~ 
= q)i (r)eii  ¢Pj ( r ) .  (10) 

i flt  fl i j 

Using simultaneously Eqs. (5) and (8), one obtains for the matrix elements of 
the effective potential in the space of the valence functions {v=} the following 
expression: 

# 

with 

= <v~rl~lZ, rh>O,j <Zj ~ljlv~rl#> (12) 
ij 

o!f -- v~(-~.)u - "wkl~') (13) 

and X (~) a vector of ~ orthonormal spin-orbitals centred on the fragment #. 
The construction of these matrix elements requires only the evaluation of 
overlap integrals between the valence functions and the orbitals used for the 
expansion of Fe::, a process that can be performed in a simple and economical 
way. Note that {v~} may also include functions which are centred on the fragment 
/~ and are used for the expansion of the molecular orbitals {Z!")}. In this case the 
matrix elements of l~:  between each pair of these functions coincide with the exact 
ones. 

Two main problems need to be solved in order to obtain a working method. 
The first one is the definition of a simple and efficient criterion for the choice of 
basis functions appropriate for expanding the orthonormal orbitals {ZI")}. In 
Sect. 3 we suggest a procedure for the choice of functions which one should add to 
the original basis set of the fragment # in order to improve the quality of the 
representation without increasing appreciably the number of basis functions. 

The second problem is an appropriate definition of the "long-range" potential 
that must be subtracted from the Coulomb operator I ( p ~ , )  in order to obtain its 

"short range" component. In principle, one could simply make a "one center" 
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expansion of Plu in a coordinate system centred on the_ fragment p, evaluate the 
first few multipole moments and subtract the corresponding potential from [(pl,). 
However, since we are dealing with charge distributions localized on fragments 
which are constituted by several atoms, it seems more convenient to distribute a 
set of point charges on a few relevant positions (atoms or bond centres) and 
require that the resulting charge distribution have the same total charge and 
dipole moment as calculated with the wave function of the fragment #. In order to 
obtain this result one can use, for example, the "extended Mulliken electron 
population analysis" proposed by Huzinaga et al. [36], which requires the evalu- 
ation of standard monoelectronic integrals. Furthermore, if a better correspond- 
ence is required between exact and approximate potential, one can either use 
a larger number of point charges distributed in such a way as to reproduce also 
higher multipole moments of the charge distribution on the fragment # or, using 
a smaller number of point charges, minimize the errors on the first few multipole 
moments. 

3 Results and discussion 

In order to give an example of the quality of the results obtainable using this type of 
representation, we have considered three molecular systems inside which one can 
clearly identify chemical fragments. Each fragment is characterized by a set of 
localized orbitals which represent the electronic charge distribution governing the 
dynamics of the valence electrons. The systems considered are the following: Li2, 
bipyrrole (CsN2Hs), an aromatic molecule obtained from the condensation of two 
pyrroles, and Sill4. 

Li2 has been chosen since, in this case, each fragment is clearly defined as a Li 
ion with a pair of core electrons localized on it. The corresponding Coulomb 
operator I( ls  2) has a purely atomic character and we will show that a non-local 
representation of the type proposed in Eq. (8), with a basis set appropriate to the 
problem, allows one to reproduce almost exactly various matrix elements of the 
Coulomb operator which are important in the energy calculation. Such an example 
indicates that this representation constitutes an alternative to those based on linear 
combinations of gaussian [20 24] or error [25] functions multiplied by powers of 
the radial coordinate. 

Bipyrrole has been chosen since it was used in Refo [353 for testing the non-local 
representation proposed for the exchange operator. This molecule, at its equilib- 
rium geometry, is characterized by a clear separation between ~ and tr electrons, 
and therefore by a well-defined sigma skeleton inside which three distinct chemical 
fragments can be identified - two pyrrole rings (without a C-H bond) and one C-C 
bond. It follows that the effective potential, due to the sigma skeleton, can be 
represented as the sum of three distinct contributions pertaining to the charge 
distributions localized on the three molecular fragments. 

Sil l ,  has been chosen for testing the quality of the non-local representation 
when applied to the entire effective potential operator, i.e. to G(p) -- J (p)  - 3~7(p). 
We have considered two different examples. One in which the charge density p is 
that of the core electrons of Si and a second in which p is that of the electrons 
localized on the molecular fragment Sill3. In the first case we have calculated, at 
the Hartree-Fock (HF) level, the electronic energy as a function of the Si-H bond 
distance for symmetric and simultaneous changes of the four Si-H bonds from the 
equilibrium position. In the other case, the energy relative to the (H3Si)-H bond 
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has been calculated as a function of the bond distance while keeping the geometry 
of the Sill3 fragment fixed. 

We want to remark that in the examples reported below we have considered 
only the problem of correctly representing a given effective potential which consists 
of a "short-range" Coulomb part plus, in the last example, an exchange potential. 
This means that we have not introduced in our test calculations any pseudopoten- 
tial owing to the orthogonality constraints between core and valence orbitals. 
These last have been taken strictly orthogonal to the core orbitals in all the 
examples considered and this has been achieved either by exploiting the symmetry 
of the problem, as in the case of the bipyrrole, or by including in the valence space 
also the components of the core orbitals. The reasons of this choice derive from the 
fact that the orthogonality problem is qualitatively different from that of represent- 
ing an effective Coulomb or exchange potential and, therefore, the two problems 
have to be treated separately in order to clearly understand the relative importance 
of the various effects that can be present. 

Let us consider first the case of Li2 at its equilibrium geometry. In this case, and 
according to the frozen core approximation, the effective Coulomb potential which 
governs the dynamics of the valence electrons is the sum of two operators each 
of which has the ls of a Li atom as its kernel orbital. This Coulomb potential 

^ 2 2 , ~  ^ 2 2 can be thereby expressed as I(ltr 0 + l~r,) _ I ( l s l  + ls2) = / ( l s  2) + (ls 2) with the 
"long-range" component of each operator that is a pure Coulomb potential since 

• ^ 2 2 . , ,  hmr-,~ I ( l s  (r)) = - 7 .  It follows that the short range operator that we want 
to represent through Eq. (8) is given by: 3 ( l s  2) = [ / ( ls  2) + 2] with i = 1, 2. 

In order to obtain a high quality representation of J ( l s  2) by means of the 
expansion (8), but without using too many functions, we start from the atomic basis 
set centred on each Li atom and used for the molecular calculations. To this basis 
set [37], which consists of lOs/4pz gaussian functions {gi} contracted to 3s/2pz, we 
add one more s-type function and search for the orbital exponent that minimizes 
the "distance" between exact and approximate operator over a space of M valence 
functions {v,}. This means that we minimize the following distance: 

^ ~ 1 / 2  

(7 = [[Jex(lS 2) - -  3app( l s2)  U = ,..~[(v~l~x(1s21)- J .pp( l sZ) [vp) [  2 )  ( 1 4 )  

a~ / 
5 + 1  

i jail 

Si~ = (gilg~) (15) 

by changing the orbital exponent of the 6th gaussian function added to the atomic 
basis set. Note that the valence space, inside which the minimization is performed, 
is that spanned by the sum of the two atomic basis sets; thereby implying M = 10 
in Eqs. (14). 

The results obtained are summarized in Table 1 where we report the behaviour 
of the "distance" between exact and approximate operators as a function of 
the orbital exponent (~) of the s-type gaussian added to the primitive basis set 
of the fragment• We observe that the minimum of a is obtained for ~ ~ 30, a value 
that allows the reproduction of the matrix elements of J ( l s  2 + ls 2) over the 
molecular orbitals (lo-0, lau, 2o- 0) with an accuracy that is of the order of about 
3.10 -4 a.u. 

The same type of analysis has been performed in the case of the bipyrrole 
molecule• In this case we have restricted the variational calculation to the e-space 
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Table 1. Li2 molecule: behaviour of the distance (a) between exact and approximate representations of 
the "short-range" part of the Coulomb operator: 3(lsl + ls2), and behaviour of the modulus of various 
matrix elements of the approximate operator as functions of the orbital exponent (~) of the gaussian 
added to the atomic basis set. Note that c~ = 0 means that no function has been added. All the quantities 
are given in atomic units 

~r [<1%lJllG0)[ 1(2GaIJl2Gg>[ [<ler, lJ[ler=>l 

100.0 0.0563 2.0646 0.0562 2.0754 
50.0 0.0403 2.0681 0.0562 2.0712 
30.0 0.0274 2.0685 0.0552 2.0709 
10.0 0.0419 2.0709 0.0553 2.0684 
7.0 0.0598 2.0682 0.0563 2.0711 
2.0 0.1164 2.0265 0.0600 2.1134 
0.0 0.1180 2.0425 0.0609 2.0967 

exact - 2.0688 0.0553 2.0706 

and used, for the sigma skeleton, orbitals obtained from calculations on the 
separate fragments. The procedure used is similar to that expounded in Ref. [35] 
and is based on the following four steps: 

a) Localization of the sigma orbitals obtained from a SCF calculation on the 
isolated pyrrole. 

b) Minimization of the distance between exact and pseudo-Coulomb operators 
having kernels which consist of the sigma orbitals of one pyrrole. 

c)  Construction of the total pseudo-Coulomb operator for bipyrrole through 
adding those relative to the two pyrroles (prepared as explained in the previous 
steps) and a third kernel consisting of the C-C  bond orbital obtained from a H F  
calculation on the bipyrrole. 

d) Calculation of the valence energy of the bipyrrole using the total pseudo- 
Coulomb operator. 

The calculations have been performed using a minimal basis set of STO-5G 
gaussian functions [38-39], which has been increased for the rc-orbitals by 
including two diffuse Px functions centred on each heavy atom (C~c = 0.1-0.05; 
eN = 0.12-0.06). To represent the "short-range" part  of the Coulomb operator  
of each fragment, via Eq. (8), we have used the set of px functions centred 
on that fragment plus one Px function for each heavy atom. Note that the 
ratio of the orbital exponent (el) of the function added on each C to that 
of the function added on N has been kept fixed and equal to 0.833. This orbital 
exponent (el) has been changed to minimize the "distance" between exact and 
approximate operator  inside the space of the valence functions of the bipyrrole. 
The "long-range" potential that has been subtracted from the Coulomb operator 
of each fragment is that produced by a set of point charges having the same total 
charge and dipole moment  as calculated with the sigma orbitals of that fragment. 
The values and locations of these charges have been obtained by following the 
procedure suggested in Ref. [36]. We see, from the results reported in Table 2, 
that a satisfactory value can be obtained both for the n-energy and for the 
transition energies to the first singlet and first triplet excited states by adding 
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Table 2. Bipyrrole molecule: behavior of the distance (a) between exact and approximate representa- 
tions of the "short-range" part of the Coulomb operator and behaviour of the energy difference and 
of the transition energies to the first singlet (A~) and to the first triplet (At) excited state as functions of 
the orbital exponent (cq) of the gaussian added to the basis set of the fragment. Note that ~a = 0 
means  that no function has  been added. All the quantities are given in atomic units 

~ cr AEpp._ e~. A~ At 

0.0 0.462124 - 0 . 0 4 8 3  0.2140 0.1460 
0.005 0.461583 -0 .0451  0.2135 0.1456 
0.010 0.460989 - 0 . 0 3 3 7  0.2097 0.1429 
0.020 0.460887 - 0 . 0 1 5 9  0.2093 0.1412 
0.030 0.460765 - 0 . 0 0 9 5  0.2108 0.1408 
0.040 0.460755 - 0 . 0 0 7 8  0.2129 0.1409 
0.060 0.460801 - 0 . 0 1 0 3  0.2148 0.1419 
0.070 0.460819 - 0 . 0 1 2 5  0.2161 0.1425 
0.080 0.460823 - 0 . 0 1 4 7  0.2172 0.1430 
0.090 0.460925 - 0 . 0 1 6 7  0.2182 0.1435 

exact - - 0.2177 0.1427 

only one more function per atomic center to the primitive basis set of each 
fragment. 

In order to improve the quality of these results, we have added to the previously 
optimized basis set another p~ function on both the C atoms and the N and 
afterwards searched for the orbital exponent (e2) that minimizes the distance 
between exact and approximate operators. F rom this procedure we have obtained 
a minimum distance (a = 0.4605) for a value (e2 = 0.03) that gives a difference 
between "exact" and "approximate" energies (AE,pp-e~= -0.0021 a.u.) that is 
about  four times smaller in absolute value than that obtained by adding a 
single function. Furthermore,  the new values of the transition energies 
(As = 0.2147 a.u. and At = 0.1421 a.u.) differ from the exact ones by less than 
0.1 eV. We observe that by using this representation one can correctly reproduce 
also the eigenvalues of the Fock operator  relative to the H O M O  and L U M O  
orbitals of the two symmetries (bo, a,) involved in the calculation. This is shown by 
the following results: 

ee~3b~ = - 0.3742 a.u.; eaPP3b, = -- 0.3741 a.u. 

o,pp = 0.0986 a.u. ee~ = 0.0968 a.u.; ~4b, 4bg 

eex3,. = - 0.2827 a.u.; 8 app3a. = - 0.2774 a.u. 

ee~4,u = 0.1360 a.u.; e"PP~,u = 0.1375 a.u. 

As a final test of our method, we have considered the  Sill4 molecule and 
constructed a non-local representation of the total effective potential 
G(p) = ~(p)  - £ ( p ) .  We have considered two cases. In the first, p is the density 
of the core electrons of Si, and in the second, p is that of the 16 electrons of 
Sill3 fragment. In the first case, we have represented G(p), via Eqs. (5-8), starting 
from the functions of the molecular basis set [-40-42] that are centred on Si and 
then adding to them functions of different types with orbital exponents which 
minimize the distance between exact and approximate operator in the valence 
space. 
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Table 3. Sill4 molecule: behaviour of the distance (a) between exact and 
approximate representations of the "short-range" part of the effective operator 
and behaviour of the corresponding error on the energy as functions of the 
number and type of gaussians with orbital exponent ~ added to the basis set of 
the fragment. All the quantities are given in atomic units 

Functions ~ a AEapp.-ex. 

ls(~) 1.0 0.0590 -0.07844 
Is + is(a) 38.0 0.0519 - 0.06865 
2s+ lp(~) 2.1 0.0355 -0.00474 
2s+ l p +  ld(~) 3.2 0.0170 0.00126 

Table 4. Sill4 molecule: comparison between "exact" and approximate values of the total energy 
given as function of the Si-H bond distance for symmetric and simultaneous changes of the four 
Si H bonds. All the quantities are given in atomic units 

R (Si-H) E e x  E,,pp. A E,,pp. _ ex. 

2.740 -291.25011 -291.25509 
2.760 -291.25084 -291.25572 
2.780 -291.25120 -291.25599 
2.790 -291.25127 -291.25603 
2.800 - 291.25122 - 291.25596 
2.820 - 291.25091 - 291.25562 
2.840 - 291.25028 - 291.25497 
2.860 -291.24935 -291.25404 
2.880 - 291.24813 - 291.25284 

--0.0~98 
--0.0~88 
--0.0~79 
--0.0~76 
--0.0~74 
--0.0~71 
--0.0~69 
--0.0~69 
--0.0~71 

In  Table  3 we repor t  the values of the m i n i m u m  dis tance  and  of  the e r ror  on the 
energy ob ta ined  by  enlarging,  step by step, the basis  set used for the representa t ion .  
N o t e  tha t  in the fol lowing examples  the reference or  "exact"  energies are those 
ob t a ined  f rom s t anda rd  Har t r ee  F o c k  calcula t ions  per formed  in the frozen core 
app rox ima t ion ,  i.e. by  keeping the f ragment  orbi ta ls  frozen. As one can see f rom the 
values r epor ted  in Table  3 the convergency to the "exact"  energy value is qui te  
significant and  the rate  of convergency increases apprec iab ly  when funct ions of 
higher  angu la r  m o m e n t u m  are included in the basis set. 

Since, however,  one is especial ly interested in the dependence  of the energy on 
the geometr ica l  parameters ,  more  than  in the abso lu te  energy values, we have 
r epor t ed  in Table  4 the to ta l  energy curve, i.e. the electronic energy (core and  
valence) plus the nuclear  repuls ion  term ca lcula ted  for symmetr ic  changes  of  the 
four  S i l l4  bonds  a r o u n d  the equi l ib r ium posi t ion.  The curve ob ta ined  using our  
a p p r o a c h  is c o m p a r e d  in Fig. 1 with the "exact"  one p lo t t ed  with respect  to its 
min imum.  One  can observe tha t  the two curves are significantly para l le l  a long 
a wide range of in te rnuc lear  distances,  even if for the represen ta t ion  of the effective 
po ten t ia l  we have not  used the la rges t  basis set, i.e. tha t  giving the best  energy 
value, bu t  a smal ler  one: the (2s + lp) of Table  3 with orb i ta l  exponents  op t imized  
at  the equi l ibr ium geometry .  

Ano the r  measure  of the qual i ty  of these results is given by the ca lcula t ion  of  
a few quant i t ies  which character ize  the a p p r o x i m a t e  curve, i.e. equi l ib r ium pos i t ion  
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and value of the second derivative at the equilibrium position. The satisfactory 
values obtained for these quantities - which are compared in Table 5 with those 
deriving from a SCF calculation performed with and without the frozen core 
approximation - indicate that an approach of this type can be used also for 
predicting spectroscopic constants. 

In the other example concerning the Sill4 molecule we have applied our 
method to the representation of the "short-range" part of the effective potential 
produced by the electronic charge distribution localized on the Sill3 fragment. In 
this example, a proper definition of the "long-range" potential which one has to 
subtract from I(p) in Eq. (7) is important, since the electronic charge distribution of 
the fragment presents also relevant quadrupole components that should be taken 
into account for obtaining a "short-range" effective operator. In order to achieve 
this result in the simplest possible way, we have used the minimum number of 
charges (one for each atomic center) which respect the symmetry of the problem, 
reproduce exactly the total charge and give dipole and quadrupole components 
sufficiently accurate. In practice, we have used the effective charge on Si and the 
ratio between this charge and that on each hydrogen as variational parameters in 
the process of minimization of the distance between exact and approximate 
"short-range" operators. Such a process has been performed at the equilibrium 
geometry and under the constraint of conservation of the total charge. In Table 6 
we present the absolute values of dipole and quadrupole components relative to the 
electronic charge distribution of the fragment and to the distributions of positive 
charges derived either as suggested in Ref. 1-36] or as proposed in this example. We 
see that our charge distribution allows a better compensation of the quadrupole 
components while introduces only a small error on the dipole. 

The basis set used for the representation of the "short-range" effective operator 
G(p) through Eqs. (5-8) is the (2s + lp) of the previous example with orbital 
exponents optimized for the specific problem. The behaviour of the error on the 
total energy for different values of the (H3Si)-H bond distance is reported in 
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Table 5. Sill4 molecule: equilibrium distance (Req.) and sec- 
ond derivative (K) at the equilibrium position of the curves 
obtained from an exact SCF calculation, a "frozen core" 
calculation and from our method. All the quantities are given 
in atomic units 

Req. K 

Exact 2.792 0.847 
Frozen-core 2.791 0.848 
Method 2.789 0.870 

Table 6. (HaSi)-H molecule: absolute values of total charge (q), 
x-component of the dipole moment (Dx) and xx-component of the 
quadrupole moment (Qx~) relative to the electronic charge distribu- 
tion (Pe~), to the point charge distribution (Pn) obtained through the 
procedure of Ref. [36] and to that (Pt) used in the text. All the 
quantities are given in atomic units 

Pet P~ Pt 

q 16.000 16.000 16.000 
Dx 2.497 2.497 2.593 
Qxx 17.367 10.178 12.538 

Table 7. (HaSi)-H molecule: behaviour 
of the difference between exact and ap- 
proximate values of the total energy 
given as function of the length (R) of 
the (H3Si) H bond. All the quantities 
are in atomic units 

R A Eopp ..... 

2.740 -0.00416 
2.760 -0.00415 
2.780 -0.00416 
2.790 ~0.00416 
2.800 -0.00418 
2.820 -0.00420 
2.840 -0.00423 
2.860 -0.00428 
2.880 -0.00433 

T a b l e  7 a n d  exac t  and  a p p r o x i m a t e  curves  a re  c o m p a r e d  in Fig.  2. T h e  va lues  of  
e q u i l i b r i u m  p o s i t i o n  a n d  second  de r iva t i ve  of  the  a p p r o x i m a t e  cu rve  a re  respec-  
t ive ly  Req = 2.782 a.u. a n d  K -- 0.210 a.u. wh ich  c o m p a r e  ve ry  well  w i th  the  " e x a c t "  
ones:  Req = 2.780 a.u. a n d  K - - 0 . 2 2 0  a.u. T h e  fact  tha t  the  di f ference b e t w e e n  
a p p r o x i m a t e  a n d  exac t  ene rgy  va lues  increases  at  la rge  b o n d  d i s tances  d e p e n d s  
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essentially on the type of point charge distribution chosen for eliminating the 
"long-range" component of the potential. A better reproduction of the exact energy 
curve could be easily obtained also in this region by using a more sophisticated 
distribution of point charges. 

To conclude, we summarize the following considerations: 

- The method allows one to obtain an accurate and economical representation not 
only of the "short-range" part of a Coulomb operator with kernel orbitals localized 
on a given molecular fragment, but also of the whole effective potential due to the 
electrons localized on the fragment. It follows that the representation of the 
effective potential governing the dynamics of the valence electrons in a large 
chemical system can be obtained as the sum of the representations of the effective 
potentials due to the various fragments. 

- This type of approach has been proposed for representing "short-range" oper- 
ators, and therefore it requires the minimization of the distance between exact and 
approximate operators only in the space of the valence functions centred on 
positions which are contained inside the volume of definition of the "short-range" 
operator. 
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